



# Canada

# Why might we be concerned if average costs are not minimized?

- A large average cost "gap" may imply there that existing production technologies could be utilized more efficiently.
- Rapid changes in input prices may challenge the ability to minimize average costs
- There may be a relation between an average cost gap and incentives to invest/disinvest in capital stock.
- A gap may also have implications for Canadian industry competitiveness.

### Capacity Utilization as an Indirect Measure of the Average Cost Minimization

- Assume industries minimize average costs under the constraint of fixed capital inputs
- Also assume industries compensate for this through their decisions over levels of other inputs (ie, labour and intermediate inputs) to meet demanded levels of output.
- Then there may be a gap between actual average costs and their theoretical minimum levels. Minimum average costs are defined in the long run when all inputs, including capital, are free to vary.
- There are levels of output associated with actual average costs and theoretical minimums
- The ratio of actual output to optimal output gives an indirect measure of the average cost gap. This measure is referred to as Capacity Utilization

#### **Defining Capacity Utilization**

- Under assumption of long-run constant returns to scale (CRTS), LRAC curve is a straight line.
  - Minimum point on SRAC curve is also the point of tangency with LRAC curve
- CU=Y/Y\* implies average costs are \$G above minimum level.
- This definition comes at the expense of a more general picture between cost and scale



4

#### Determining Reasons for Average Cost Gap

- When CU<1 (Y<Y\*), higher fixed costs of capital more than offset lower variable costs
  - Incentives to shed capital to lower average costs
  - Shedding capital shifts SRAC curve to the left to Y1
- When CU>1 (eg. Y>Y\*), higher variable costs more than offset lower fixed costs of capital
  - Incentives to invest in capital to lower average costs
  - Investing in capital shifts SRAC right to Y2



#### Measurement Strategy

- Specify industry-level variable cost function which treats capital as a quasifixed input (Eg, Berndt and Hesse, 1986).
  - Also specify variable input cost share equations and other equations representing costminimizing optimization behavior.
  - These equations share same parameters as variable cost function.
- Estimate system using Seemingly Unrelated Regressions (SUR)
- Use estimated parameters to derive optimal levels of output using numerical methods. Capacity utilization is ratio of observed output to optimal output
- With proper restrictions in place, we can relate capacity utilization to the average cost scenario presented in previous slides

#### **Estimation Procedure**

• The short-run cost function includes prices of variable inputs labour (PL) and intermediates (PI), levels of fixed capital (K), levels of output (Y) and time (t):

 $lnVC = \alpha_o + \alpha_Y lnY + \alpha_L lnP_L + \alpha_I lnP_I + \beta_K lnK + \alpha_t t + 0.5\alpha_{tt}t^2 + 0.5\gamma_{yy}(lnY)^2 + 0.5\gamma_{LL}(lnP_L)^2 + \gamma_{LI} lnP_L lnP_I + 0.5\gamma_{II}(lnP_I)^2 + 0.5\gamma_{KK}(lnK)^2 + \rho_{YL} lnY lnP_L + \rho_{YI} lnY lnP_I + \rho_{YI} lnY lnP_L + \rho_{KI} lnK lnP_I + \rho_{KI} lnK lnP_I + \rho_{tY} tlnY + \rho_{tK} tlnK + \rho_{tL} tlnP_L + \rho_{tI} tlnP_I$ 

 Input demand equations use same parameters and increase degrees of freedom:

$$\frac{P_L L}{VC} = \alpha_L + \gamma_{LL} ln P_L + \gamma_{LI} ln P_I + \rho_{YL} ln Y + \rho_{KL} ln K + \rho_{tL} t$$

- Restrictions to ensure:
  - homogeneity of degree one in prices (eg:  $\alpha_L + \alpha_I = 1$ )
  - long-run constant returns to scale (eg:  $\alpha_Y + \beta_K = 1$ )  $\leftarrow$  Flat LRAC curve

### **Estimation Procedure**

- The cost function parameters can also be used in the estimation of a "shadow value" equation for capital:
  - $\frac{-R_K K}{VC} = \beta_K + \gamma_{KK} lnK + +\rho_{YK} lnY + \rho_{KL} lnP_L + \rho_{KI} lnP_I + \rho_{tK} t < 0$

Where,

- $-R_K K = P_Y Y VC$  is the gross operating surplus, the best industry can do in the short run
- The shadow price,  $R_K$ , is negative because it indicates the potential reduction in variable costs from an increase in the level of capital.

## Determining Cost Minimizing Level of Output (Y\*)

- After estimation, rearranging the shadow value equation gives a value for the shadow price:
  - $-R_{K} = \frac{VC(Y)}{K} (\beta_{K} + \gamma_{KK} lnK + +\rho_{YK} lnY + \rho_{KL} lnP_{L} + \rho_{KI} lnP_{I} + \rho_{tK} t)$ (A)
- Under CRTS, in a long-run equilibrium, the user cost of capital,  $P_k$ , coincides with the shadow value of capital, such that:
  - $P_k = -R_K$
- Search for an optimal level of output, Y\*, in (A) such that  $P_k = -R_K$ .
- Y\* is defined by the point where the horizontal LRAC curve and the SRAC curve are tangent

#### Data and Construction of Variables

- Data on Canadian food processing and beverage and tobacco processing are obtained from Statistics Canada's Canadian Productivity Accounts
- Published industry-level variables include nominal values and quantity indexes for:
  - Gross output (all produced output: sales, intermediate inputs and inventories)
  - Capital services (aggregated stocks of productive capital weighted by user costs)
  - Labour services (aggregation of multiple types of workers)
  - Intermediate inputs (aggregation of energy, materials and services)
- Implicit price indexes for variable inputs are constructed by dividing the total value of the variable by the relevant quantity indexes.
- Data on Canadian and US aggregated FBT industries are obtained from WorldKLEMS database
  - Some methodological differences

#### **Estimated Parameters**

#### Canada Food

#### Canada Beverage and Tobacco

| Parameter | Estimate  | T-Stat.  | Parameter | Estimate  | T-Stat.  |
|-----------|-----------|----------|-----------|-----------|----------|
| Constant  | 0.8809    | 31.7280  | Constant  | 0.8793    | 14.1990  |
| PL        | 0.4422    | 19.5050  | PL        | 0.3387    | 6.9877   |
| PI        | 0.5578    | 24.6020  | PI        | 0.6614    | 13.6460  |
| т         | -0.0083   | -13.9750 | Т         | -0.0070   | -3.2388  |
| Y         | 1.0633    | 37.0110  | Y         | 0.9863    | 17.0370  |
| K         | -0.0633   | -2.2044  | K         | 0.0137    | 0.2375   |
| PLPL      | 0.1151    | 11.9990  | PLPL      | 0.0703    | 3.3728   |
| PLPI      | -0.1151   | -11.9990 | PLPI      | -0.0703   | -3.3728  |
| PLT       | -0.0020   | -12.1370 | PLT       | -0.0007   | -1.5361  |
| PLY       | -0.0053   | -0.4284  | PLY       | -0.1967   | -11.6170 |
| PLK       | 0.0053    | 0.4284   | PLK       | 0.1967    | 11.6170  |
| PIPI      | 0.1151    | 11.9990  | PIPI      | 0.0703    | 3.3729   |
| PIT       | 0.0020    | 12.1370  | PIT       | 0.0007    | 1.5361   |
| PIY       | 0.0053    | 0.4284   | PIY       | 0.1967    | 11.6170  |
| PIK       | -0.0053   | -0.4284  | PIK       | -0.1967   | -11.6170 |
| KT        | -0.0019   | -8.1223  | KT        | -0.0050   | -5.4663  |
| KY        | 0.0261    | 0.7090   | KY        | -0.3105   | -3.6498  |
| KK        | -0.0261   | -0.7090  | KK        | 0.3105    | 3.6498   |
| TT        | 0.0001    | 5.7917   | TT        | 0.0001    | 1.0373   |
| ТҮ        | 0.0019    | 8.1223   | TY        | 0.0050    | 5.4663   |
| YY        | -0.0261   | -0.7090  | YY        | 0.3105    | 3.6498   |
| VC        | R-Squared | 0.9997   | VC        | R-Squared | 0.9974   |
| L         | R-Squared | 0.6161   | L         | R-Squared | 0.8885   |
| K         | R-Squared | 0.7824   | K         | R-Squared | 0.6530   |
|           |           |          |           |           |          |

### Estimated Measures of Capacity Utilization for Canadian Industries

- From mid 1990s, food processing capacity utilization remained close to one, suggesting average costs are being minimized.
- Capacity utilization for beverage 1.20 and tobacco declined over a period 1.10 of five years to 0.88 in 2008. 1.00
  - Fixed costs may have been high relative 0.90 to average variable costs.
  - Persistence may also suggest that incentives exist for the industry to shed capital.



#### **Estimated Parameters**

| Canada FBT |                  |          | US FBT    |           |         |  |
|------------|------------------|----------|-----------|-----------|---------|--|
| Parameter  | Estimate         | T-Stat.  | Parameter | Estimate  | T-Stat. |  |
| Constant   | 0.8479           | 35.3960  | Constant  | 0.7196    | 20.5800 |  |
| PL         | 0.4569           | 20.4710  | PL        | 0.3346    | 11.4800 |  |
| PI         | 0.5431           | 24.3340  | PI        | 0.6655    | 22.8300 |  |
| Т          | -0.0105          | -15.9660 | т         | -0.0078   | -8.2500 |  |
| Y          | 1.0448           | 46.1630  | Y         | 1.1357    | 54.6600 |  |
| К          | -0.0448          | -1.9787  | К         | -0.1357   | -6.5300 |  |
| PLPL       | 0.1224           | 11.2190  | PLPL      | 0.0858    | 6.5720  |  |
| PLPI       | -0.1224          | -11.2190 | PLPI      | -0.0858   | -6.5720 |  |
| PLT        | -0.0028          | -13.8620 | PLT       | -0.0012   | -5.7970 |  |
| PLY        | -0.0211          | -1.9224  | PLY       | 0.0336    | 4.4130  |  |
| PLK        | 0.0211           | 1.9224   | PLK       | -0.0336   | -4.4130 |  |
| PIPI       | 0.1224           | 11.2190  | PIPI      | 0.0858    | 6.5720  |  |
| PIT        | 0.0028           | 13.8620  | PIT       | 0.0012    | 5.7970  |  |
| PIY        | 0.0211           | 1.9224   | PIY       | -0.0336   | -4.4130 |  |
| PIK        | -0.0211          | -1.9224  | PIK       | 0.0336    | 4.4130  |  |
| KT         | -0.0028          | -8.0660  | KT        | -0.0016   | -3.7770 |  |
| KY         | -0.0350          | -1.0336  | KY        | 0.0127    | 0.6006  |  |
| KK         | 0.0350           | 1.0335   | KK        | -0.0127   | -0.6006 |  |
| TT         | 0.0002           | 8.3453   | TT        | 0.0002    | 7.8210  |  |
| TY         | 0.0028           | 8.0661   | TY        | 0.0016    | 3.7770  |  |
| YY         | 0.0350           | 1.0336   | YY        | -0.0127   | -0.6006 |  |
| VC         | R-Squared        | 0.9996   | VC        | R-Squared | 0.9996  |  |
| L          | R-Squared        | 0.7658   | L         | R-Squared | 0.5866  |  |
| K          | <b>R-Squared</b> | 0.6936   | К         | R-Squared | 0.7990  |  |

### Estimated Capacity Utilization Measures for Canadian and US FBT

- CU trends for Canadian and US aggregated food, beverage and tobacco processing were similar until late 1990s
- But from roughly 1998 onwards, the pictures diverge.
- CU suggests US FBT average costs were not minimized due to:
  - High fixed costs in late 1990s-early 2000s
  - High variable costs in mid- to late-2000s



# Summary

- Preliminary results suggest that the Canadian food processing industry was relatively cost efficient over 1999-2008.
- Capacity utilization in Canadian beverage and tobacco processing saw a sustained period of decline over the mid-2000s
  - suggests that high fixed costs associated with capital boosted average cost above minimum levels.
- For US FBT, minimum average costs do not appear to have been met, although the reasons differ across various points in the 2000s

## Limitations of this Framework and Future Work

- Simply meeting minimum average cost does not necessarily ensure cost competitiveness in relation to industries in other countries.
- Hard to gauge size of gap. A direct measure would take shape of SRAC curve into account.
- With less-aggregated industry (eg, 4-digit NAICS) data, it may be possible to identify industries that have trouble meeting minimum average costs.
- Timeliness is an issue. CPA only runs to 2008. Can Statcan survey-based measures be linked to economic measures of Capacity Utilization?
- Suggesting policy options likely requires more precision in results, possibly starting with refinements to the shadow value equation