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Context and goal

I Effectiveness of pesticides / pest-toxic crop varieties
may be lost over time (⇐ selection pressure)

I Natural resource economics: pesticides / pest-toxic varieties:
affect two interdependent “biological resources”:

I Level of the pest population (detrimental resource)
I Susceptibility of this population to pesticides / pest-toxic crop

varieties (beneficial resource)

I Goal of this paper: contribute to the theory of the optimal use
of pest-toxic varieties over time
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Literature, context

Context

I Literature:
I Seminal paper: Hueth & Regev (1974) (dynamic externalities

of pesticide use)
I Early contributions 1970s-1980s (chemical pesticides)
I New scrutiny: advent of pest-toxic GM Bt crops and refuge

regulation

I Refuges:
I First mandatory large-scale system for pest resistance

management
I All farmers growing a Bt crop must allocate a given

percentage of their area to a non-GM, non-insect-toxic variety
I Principle: resistant insect emerging from Bt crops is likely to

mate with one of the much larger population of susceptible
pests emerging from refuge fields
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Literature, context

Literature

I Laxminarayan and Simpson (2002), Qiao et al. (2008, 2009)
I Biological model: rather inconsistent with the lifecycle of

insects, first two models written for haploid pests, continuous
time not best-fitted (high selection if zero refuge)

I Grimshud and Huffaker (2006)
I Ad-hoc specification of relative speed of resistance

I Secchi et al. (2006), Hurley et al. (2001)
I No analysis of overcost of Bt and fitness cost,

or constant refuge
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Literature, context

Our approach

I Stylized bio-economic model of Bt crops & refuges,
compatible with population biology literature
(and with Hurley et al. 2001, who have constant refuge)

I Identify analytically inter-temporal effects on pest population
/ susceptibility

I Draw a clear picture the optimal, time-variant refuge and an
exhaustive dynamic comparative exercise with simulations

I Discussion of previous stylized analytical models
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Model

Assumptions

I Pest population: N = Nrr + Nss + Nrs

I Alleles: Nr + Ns = 2N
Nr = 2Nrr + Nrs Ns = 2Nss + Nrs

I Proportions: pr + ps = 1 pr = Nr/(2N) ps = Ns/(2N)
I Lifecycle:

I Stage 1: adult migration, reproduction, density dependence

N1 = [1 + g(1− N/K )]N

Nrr ,1 = pr
2N1 Nrs,1 = 2prpsN1 Nss,1 = ps

2N1

I Stage 2: genotype-induced mortality

Nrr ,2 = (1− c)Nrr ,1 Nrs,2 = φNrs,1 Nss,2 = φNss,1
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Model

Biological model: allele numbers

N ′r = Nr

[
1 + g

(
1− Nr + Ns

2K

)]
(1− c)Nr + φNs

Nr + Ns

N ′s = Ns

[
1 + g

(
1− Nr + Ns

2K

)]
φ

I Logistic regeneration / density dependence of pest population

I Impact of random mating on the genotypic composition

I Fitness of the aggregate of susceptible alleles
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Model

Bio-economic model

• Laws of motion:

N ′ = fN(N, pr , φ) =
[
(1− c)pr

2 + φ(1− pr
2)
] [

1 + g

(
1− N

K

)]
N

pr
′ = fr (pr , φ) =

(1− c)pr
2 + φpr (1− pr )

(1− c)pr
2 + φ(1− pr

2)

• Susceptibility may be renewable:

∆pr ≡ pr
′ − pr =

(1− pr )pr
2(1− c − φ)

(1− c)pr
2 + φ(1− pr

2)
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Model
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Figure: The phase diagram
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Model

• Per-period cost function:

C (N, pr , φ) = αfN(N, pr , φ) + cs(1− φ)

• Intertemporal objective:

V (N1, pr1) = min
0≤φ≤1

T∑
0

δtC (N, pr , φ)

subject to T <∞ and the laws of motion of the state variables.
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Analysis

Optimal control problem (discrete time)

L =
T∑

t=0

δt{−C (Nt , pr t , φt) + δλt+1 [fN(Nt , pr t , φt)− Nt+1]

+δµt+1

[
fr (pr t , φt)− pr t+1

]
}

• Necessary conditions for an optimum:

∂L

∂φt
≤ 0, φt ≥ 0 and

∂L

∂φt
φt = 0

or
∂L

∂φt
≥ 0, φt ≤ 1 and

∂L

∂φt
(1− φt) = 0

∂L

∂Nt
= 0

∂L

∂pr t

= 0

∂L

∂[δλt+1]
= 0

∂L

∂[δµt+1]
= 0
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Analysis

Interior solution

cs − δµt+1
(1− c)(1− pr )pr

2

[φ+ p2
r (1− c − φ)]2

=

(
1 + g

(
1− N

K

))
N(1− pr

2)(α− δλt+1)

I Left-hand side: social (marginal) cost of using Bt seeds:
additional cost of Bt seeds + shadow cost of building up
resistance

I Right-hand side: social (marginal) benefit of avoided pest
damage
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Analysis

Optimal solution in the last period

I Shadow values: µT+1 = λT+1 = 0

I No overcost of Bt seeds (cs = 0): no refuge in last period
(as long as pr < 1)

I Overcost of Bt seeds (cs > 0): in last period, extreme control:

I no refuge if low pr / high N
I only refuge if high pr / low N
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Analysis

Figure: Optimal refuge policy at t = T (φT )
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Analysis
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• Evolution of (Nt , pr t , φt) with cs = c = 0
• Susceptibility of pest population = non-renewable resource
• No refuge in last period
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Analysis
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c = 0.15
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c = 0.50

• Comparative dynamics wrt c when cs = 0
• Susceptibility of pest population becomes renewable resource
• No refuge in last period • Reduces optimal refuge size
• No refuge: happens earlier
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Analysis
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• Evolution of (Nt , pr t , φt) with cs > 0 and c = 0
• First phase: refuge increases
• Second phase: refuge back and forth
• Third phase: no Bt

Desquilbet and Herrmann Optimal refuge strategies



Analysis
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c = 0
c = 0.05
c = 0.15
c = 0.25
c = 0.50

• Comparative dynamics of the refuge policy cs > 0
• Benefits of having RR pests rather than others
(increased mortality due to fitness cost of resistance)
• Optimal solution: always complete exhaustion of pest
susceptibility when c > 0

Desquilbet and Herrmann Optimal refuge strategies



Analysis

• Time-variant versus constant refuge

c 0 0.05 0.15 0.25 0.5

V (pr 1,N1;φt) 0.0768 0.0452 0.0153 0.0055 4.2× 10−4

cs = 0 V (pr 1,N1; φ̄) 0.0822 0.0552 0.0242 0.0102 4.7× 10−4

φ̄ 0.4050 0.3550 0.2450 0.1350 0.005
(∆V /V (.;φt)) (7%) (22%) (58%) (85%) (12%)

V (pr 1,N1;φt) 0.3485 0.2956 0.2157 0.1399 0.0309
cs = 0.03 V (pr 1,N1; φ̄) 0.3888 0.3786 0.3737 0.3730 0.3724

φ̄ 0.4550 0.4350 0.4250 0.4250 0.4250
(∆V /V (.;φt)) (11%) (28%) (73%) (166%) (1105%)
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Analysis
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Figure: Comparative dynamics of refuge policy and time horizon (T )
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Analysis

T 15 25 55 100

V (pr 1,N1;φt) 0.1972 0.2956 0.6969 0.8901
V (pr 1,N1; φ̄) 0.2730 0.3786 0.8137 1.0673

φ̄ 0.40 0.4350 0.55 0.5750
(∆V /V (;φt)) (38%) (28%) (17%) (20%)

ρ 0 0.03 0.15 0.25

V (pr 1,N1;φt) 0.4636 0.2956 0.1391 0.0581
V (pr 1,N1; φ̄) 0.5115 0.3786 0.1755 0.1251

φ̄ 0.445 0.4350 0.395 0.36
(∆V /V (;φt)) (10%) (28%) (26%) (115%)

Table: Comparative dynamics on the time horizon and the discount rate
(cs = 0.03 and c = 0.05)
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Conclusion

I Beware of what biological model you use
I Optimal adjustment of refuge size:

I No overcost of Bt seeds: more and more, then less and less
refuge

I Overcost of Bt seeds: more and more, then back and forth,
then only refuge

I Possible extensions?
I Cross-dynamics refuge / conventional pesticide
I Simulations on one particular pest/crop model
I Optimal decisions of a monopolist selling Bt seeds versus

social optimum
I Technical: If finite time horizon, introduce bequest function.
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