Managing pest resistance to *Bt* crops with dynamic refuge size adjustments

Marion Desquilbet ¹ Markus Herrmann² markus.herrmann@ecn.ulaval.ca

¹Toulouse School of Economics (INRA, GREMAQ)

²Department of Economics (CREATE), Université Laval, Québec

Annual Workshop SPAA Network Ottawa November 25, 2011

- Effectiveness of pesticides / pest-toxic crop varieties may be lost over time (selection pressure)
- Natural resource economics: pesticides / pest-toxic varieties: affect two interdependent "biological resources":
 - Level of the pest population (detrimental resource)
 - Susceptibility of this population to pesticides / pest-toxic crop varieties (beneficial resource)
- Goal of this paper: contribute to the theory of the optimal use of pest-toxic varieties over time

Context

- Literature:
 - Seminal paper: Hueth & Regev (1974) (dynamic externalities of pesticide use)
 - Early contributions 1970s-1980s (chemical pesticides)
 - New scrutiny: advent of pest-toxic GM Bt crops and refuge regulation
- Refuges:
 - First mandatory large-scale system for pest resistance management
 - All farmers growing a *Bt* crop must allocate a given percentage of their area to a non-GM, non-insect-toxic variety
 - Principle: resistant insect emerging from *Bt* crops is likely to mate with one of the much larger population of susceptible pests emerging from refuge fields

(本間) (本語) (本語)

- Laxminarayan and Simpson (2002), Qiao et al. (2008, 2009)
 - Biological model: rather inconsistent with the lifecycle of insects, first two models written for haploid pests, continuous time not best-fitted (high selection if zero refuge)
- Grimshud and Huffaker (2006)
 - Ad-hoc specification of relative speed of resistance
- Secchi et al. (2006), Hurley et al. (2001)
 - No analysis of overcost of *Bt* and fitness cost, or constant refuge

伺 ト イヨト イヨト

Our approach

- Stylized bio-economic model of *Bt* crops & refuges, compatible with population biology literature (and with Hurley et al. 2001, who have constant refuge)
- Identify analytically inter-temporal effects on pest population / susceptibility
- Draw a clear picture the optimal, time-variant refuge and an exhaustive dynamic comparative exercise with simulations
- Discussion of previous stylized analytical models

向下 イヨト イヨト

Model

Assumptions

• Pest population: $N = N_{rr} + N_{ss} + N_{rs}$

Alleles:
$$N_r + N_s = 2N$$

 $N_r = 2N_{rr} + N_{rs}$ $N_s = 2N_{ss} + N_{rs}$

Proportions: $p_r + p_s = 1$ $p_r = N_r/(2N)$ $p_s = N_s/(2N)$ Lifecycle:

► Stage 1: adult migration, reproduction, density dependence

$$N_1 = [1 + g(1 - N/K)]N$$

$$N_{rr,1} = p_r^2 N_1$$
 $N_{rs,1} = 2p_r p_s N_1$ $N_{ss,1} = p_s^2 N_1$

Stage 2: genotype-induced mortality

$$N_{rr,2} = (1-c)N_{rr,1}$$
 $N_{rs,2} = \phi N_{rs,1}$ $N_{ss,2} = \phi N_{ss,1}$

Model

Biological model: allele numbers

$$N'_{r} = N_{r} \left[1 + g \left(1 - \frac{N_{r} + N_{s}}{2K} \right) \right] \frac{(1 - c)N_{r} + \phi N_{s}}{N_{r} + N_{s}}$$
$$N'_{s} = N_{s} \left[1 + g \left(1 - \frac{N_{r} + N_{s}}{2K} \right) \right] \phi$$

- Logistic regeneration / density dependence of pest population
- Impact of random mating on the genotypic composition
- Fitness of the aggregate of susceptible alleles

伺 ト イミト イミト

Bio-economic model

• Laws of motion:

$$N' = f_N(N, p_r, \phi) = \left[(1-c)p_r^2 + \phi(1-p_r^2) \right] \left[1 + g\left(1 - \frac{N}{K}\right) \right] N$$
$$p_r' = f_r(p_r, \phi) = \frac{(1-c)p_r^2 + \phi p_r(1-p_r)}{(1-c)p_r^2 + \phi(1-p_r^2)}$$

• Susceptibility may be renewable:

$$\Delta p_r \equiv p_r' - p_r = \frac{(1 - p_r)p_r^2(1 - c - \phi)}{(1 - c)p_r^2 + \phi(1 - p_r^2)}$$

- 4 回 2 - 4 □ 2 - 4 □

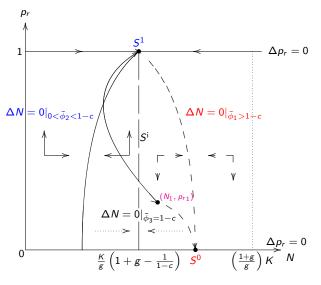


Figure: The phase diagram

< 注→ < 注→

Model

• Per-period cost function:

$$C(N, p_r, \phi) = \alpha f_N(N, p_r, \phi) + c_s(1 - \phi)$$

• Intertemporal objective:

$$V(N_1, p_{r1}) = \min_{0 \le \phi \le 1} \sum_{0}^{T} \delta^t C(N, p_r, \phi)$$

subject to $T < \infty$ and the laws of motion of the state variables.

- - E - E

- ∢ ≣ ▶

Optimal control problem (discrete time)

$$L = \sum_{t=0}^{T} \delta^{t} \{ -C(N_{t}, p_{r_{t}}, \phi_{t}) + \delta \lambda_{t+1} [f_{N}(N_{t}, p_{r_{t}}, \phi_{t}) - N_{t+1}] + \delta \mu_{t+1} [f_{r}(p_{r_{t}}, \phi_{t}) - p_{r_{t+1}}] \}$$

• Necessary conditions for an optimum:

$$\begin{aligned} \frac{\partial L}{\partial \phi_t} &\leq 0, \ \phi_t \geq 0 \quad \text{and} \quad \frac{\partial L}{\partial \phi_t} \phi_t = 0 \\ \text{or} \quad \frac{\partial L}{\partial \phi_t} \geq 0, \ \phi_t \leq 1 \quad \text{and} \quad \frac{\partial L}{\partial \phi_t} (1 - \phi_t) = 0 \\ \quad \frac{\partial L}{\partial N_t} &= 0 \qquad \frac{\partial L}{\partial p_{r_t}} = 0 \\ \quad \frac{\partial L}{\partial [\delta \lambda_{t+1}]} &= 0 \qquad \frac{\partial L}{\partial [\delta \mu_{t+1}]} = 0 \end{aligned}$$

Desquilbet and Herrmann

Optimal refuge strategies

Interior solution

$$\begin{aligned} c_s &- \delta \mu_{t+1} \frac{(1-c)(1-p_r)p_r^2}{[\phi+p_r^2(1-c-\phi)]^2} \\ &= \left(1+g\left(1-\frac{N}{K}\right)\right) N(1-p_r^2)(\alpha-\delta\lambda_{t+1}) \end{aligned}$$

- Left-hand side: social (marginal) cost of using *Bt* seeds: additional cost of *Bt* seeds + shadow cost of building up resistance
- Right-hand side: social (marginal) benefit of avoided pest damage

向下 イヨト イヨト

Optimal solution in the last period

- Shadow values: $\mu_{T+1} = \lambda_{T+1} = 0$
- No overcost of Bt seeds (c_s = 0): no refuge in last period (as long as p_r < 1)</p>
- Overcost of *Bt* seeds $(c_s > 0)$: in last period, extreme control:
 - no refuge if low p_r / high N
 - only refuge if high p_r / low N

白 と く ヨ と く ヨ と …

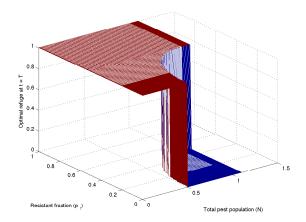
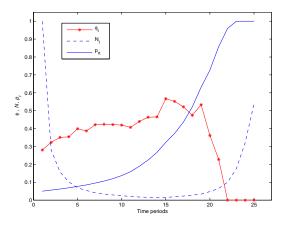


Figure: Optimal refuge policy at $t = T (\phi_T)$

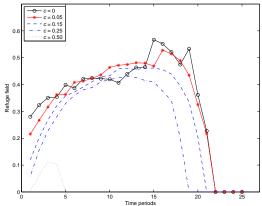
・ロト ・回ト ・ヨト

<= ≣⇒

Э

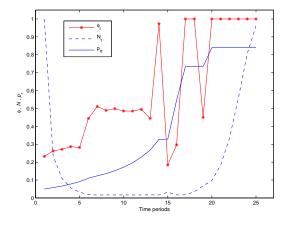


- Evolution of (N_t, p_{r_t}, ϕ_t) with $c_s = c = 0$
- Susceptibility of pest population = non-renewable resource
- No refuge in last period



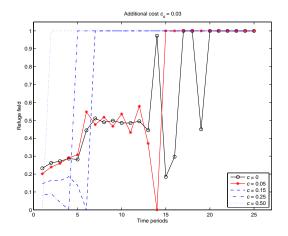
Additional cost $c_s = 0$

- Comparative dynamics wrt c when $c_s = 0$
- Susceptibility of pest population becomes renewable resource
- No refuge in last period Reduces optimal refuge size
- No refuge: happens earlier



- Evolution of (N_t, p_{rt}, ϕ_t) with $c_s > 0$ and c = 0
- First phase: refuge increases
- Second phase: refuge back and forth
- Third phase: no Bt

≣ >



• Comparative dynamics of the refuge policy $c_s > 0$ • Benefits of having *RR* pests rather than others (increased mortality due to fitness cost of resistance) • Optimal solution: always complete exhaustion of pest susceptibility when c > 0

< 1[™] >

• Time-variant versus constant refuge

	С	0	0.05	0.15	0.25	0.5
	$V(p_{r_1}, N_1; \phi_t)$	0.0768	0.0452	0.0153	0.0055	$4.2 imes 10^{-4}$
$c_s = 0$	$V(p_{r_1}, N_1; \bar{\phi})$	0.0822	0.0552	0.0242	0.0102	$4.7 imes10^{-4}$
	$\bar{\phi}$	0.4050	0.3550	0.2450	0.1350	0.005
	$(\Delta V/V(.;\phi_t))$	(7%)	(22%)	(58%)	(85%)	(12%)
	$V(p_{r_1}, N_1; \phi_t)$	0.3485	0.2956	0.2157	0.1399	0.0309
$c_{s} = 0.03$	$V(p_{r_1}, N_1; \bar{\phi})$	0.3888	0.3786	0.3737	0.3730	0.3724
	$\bar{\phi}$	0.4550	0.4350	0.4250	0.4250	0.4250
	$(\Delta V/V(.;\phi_t))$	(11%)	(28%)	(73%)	(166%)	(1105%)

・ロン ・四 と ・ ヨ と ・ ヨ と

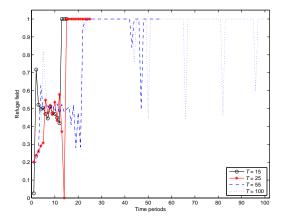


Figure: Comparative dynamics of refuge policy and time horizon (T)

▲ □ ► < □ ►</p>

< ≣⇒

T	15	25	55	100
$V(p_{r1}, N_1; \phi_t)$	0.1972	0.2956	0.6969	0.8901
$V(p_{r_1}, N_1; \bar{\phi})$	0.2730	0.3786	0.8137	1.0673
$\bar{\phi}$	0.40	0.4350	0.55	0.5750
$(\Delta V/V(;\phi_t))$	(38%)	(28%)	(17%)	(20%)
ρ	0	0.03	0.15	0.25
$V(p_{r_1}, N_1; \phi_t)$	0.4636	0.2956	0.1391	0.0581
$V(p_{r1}, N_1; \bar{\phi})$	0.5115	0.3786	0.1755	0.1251
$\bar{\phi}$	0.445	0.4350	0.395	0.36
$(\Delta V/V(;\phi_t))$	(10%)	(28%)	(26%)	(115%)

Table: Comparative dynamics on the time horizon and the discount rate ($c_s = 0.03$ and c = 0.05)

- Beware of what biological model you use
- Optimal adjustment of refuge size:
 - ► No overcost of *Bt* seeds: more and more, then less and less refuge
 - Overcost of *Bt* seeds: more and more, then back and forth, then only refuge
- Possible extensions?
 - Cross-dynamics refuge / conventional pesticide
 - Simulations on one particular pest/crop model
 - Optimal decisions of a monopolist selling *Bt* seeds *versus* social optimum
 - ► Technical: If finite time horizon, introduce bequest function.